GAUTENG PROVINCE

TIME: 1122 hours
MARKS: 80
6 pages

SECTION A

QUESTION 1

1.1 1.1.1 B \checkmark

1.1.2 $C \checkmark$
1.1.3 C \checkmark
1.1.4 A \checkmark
1.1.5 C \checkmark
1.1.6 B \checkmark
1.1.7 B \checkmark
1.1.8 C \checkmark
1.1.9 B \checkmark
1.1.10 D \checkmark
1.2 1.2.1 E \checkmark
1.2.2 B \checkmark
1.2.3 G \checkmark
1.2.4 C \checkmark
1.2.5 A \checkmark
1.3 1.3.1 Ore \checkmark
1.3.2 Hydrosphere \checkmark
1.3.3 Brown \checkmark
1.3.4 Transformer \checkmark
1.3.5 Mantle \checkmark

SECTION B

QUESTION 2

2.1 2.1.1 Contact force \checkmark
2.1.2 The stationary carton box moves in the direction of the force. \checkmark / The
force changes the movement of the object. \checkmark
2.1.3 Friction $\checkmark /$ Frictional force \checkmark
2.1.4 The box will not move. $\checkmark /$ Nothing will happen.

2.2 2.2.1 Positive $\checkmark /+\checkmark$

2.2.2 Charge A is postive \checkmark and like (same) charges repel each other.

QUESTION 3

3.1 3.1.1 The light bulb will light up. \checkmark
3.1.2 The light bulb will not light up. $\checkmark /$ Nothing is observed $\checkmark /$ Nothing will happen.
3.1.3 Circuit B does not have a cell / battery /source of energy.
3.2 3.2.1 Length of the conductor.
3.2.2 Strength of current.

3.2.3

3.2.4 As the length of the conductor increases, the strength of the current will decrease.

OR

As the length of the conductor decreases, the strength of the current will increase.

OR

The length of the conductor is inversely proportional to the strength of the current.
(Any other suitable conclusion where both variables are named.)

QUESTION 4

4.1 $2 \mathrm{~A} \checkmark$ The current in a series circuit is the same everywhere.
4.2

$$
\begin{align*}
& \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \\
& 4=1+\mathrm{V}_{2}+1 \checkmark \\
& \mathrm{~V}_{2}=2 \mathrm{~V} \checkmark \tag{2}
\end{align*}
$$

4.3 4.3.1 Increase \checkmark

4.3.2 Increase \checkmark

QUESTION 5

5.1 D; B; A; C $\checkmark \checkmark \checkmark \checkmark$ (ONLY: full marks or 0)

5.2 5.2.1 Television \checkmark

5.2.2 Toaster: Cost $=$ power rating x number of hours x unit price $=0,7 \checkmark \times 0,05 \checkmark \times 1,85 \checkmark$
$=$ R 0,06
$\begin{aligned} \text { Beater: Cost } & =\text { power rating } \times \text { number of hours } x \text { unit price } \\ & =0,175 \checkmark \times 0,5 \checkmark \times 1,85 \\ & =R 0,16 \\ \text { Total cost } & =0,006 \checkmark+0,16 \checkmark \\ & =R 0,22(\mathrm{OF} 22 \mathrm{c}) \checkmark\end{aligned}$

QUESTION 6

6.1 Hydrosphere \checkmark
6.2 Nitrogen \checkmark
6.3 Organisms / plants in sphere B will absorb the water from sphere C through
their roots \checkmark in order to survive / grow. \checkmark

QUESTION 7

7.1 Metamorphic rocks \checkmark
7.2 7.2.1 Melting \checkmark of metamorphic rocks.
7.2.2 Cooling \checkmark of magma.
7.2.3 Weathering / Erosion and transport \checkmark of igneous rocks.
7.3 7.3.1 Granite $\checkmark /$ Pumice $\checkmark /$ Basalt \checkmark (Any ONE)
7.3.2 Limestone $\checkmark /$ Sandstone $\checkmark /$ Shale \checkmark (Any ONE)

QUESTION 8

8.1 Diamonds $\checkmark /$ Gold $\checkmark /$ Iron $\checkmark /$ Platinum $\checkmark /$ Coal \checkmark (Any ONE)

8.2 chemical \checkmark

8.3 Iron is mixed with coke \checkmark and other metals \checkmark to produce steel.
8.4 • Emerging of mine dumps

- Mine dumps that are not rehabilitated.
- Pollution \checkmark
- Damage to places with tourism- or cultural value \checkmark
- Loss of farming- and natural environments \checkmark
(Any TWO disadvantages)
8.5 Northern part $\checkmark /$ North Eastern part \checkmark

QUESTION 9

9.1 A - Troposphere \checkmark
B - Stratosphere \checkmark
C - Mesosphere \checkmark
D - Thermosphere \checkmark
9.2 Decrease \checkmark
9.3 A
$9.4 B \checkmark$

