GRADE 9

NOVEMBER 2013

MATHEMATICS
 MEMORANDUM

MARKS: 100

This marking guideline consists of 12 pages.

QUESTION 1				
1.1	D V			(1)
1.2	D $\sqrt{ }$			(1)
1.3	B $\sqrt{ }$			(1)
1.4	D V			(1)
1.5	C $\sqrt{ }$			(1)
1.6	D V			(1)
1.7	D V			(1)
1.8	C $\sqrt{ }$			(1)
1.9	D V			(1)
1.10	C V			(1)
				[10]
QUESTION 2				
2.1 2.1.1 Initial Price (Value for the first year) of a car $=$ R315 000,00 Depreciation@ $7 \%=\frac{7}{100} \times 315000=R 22050,00$ Value of car for the second year $=R 292950,00 ~ V$ Depreciation @ $7 \%=\frac{7}{100} \times 292000=R 20506,50$ Value of car for the third year $=R 272443,50 ~ V$ Depreciation @ $7 \%=\frac{7}{100} \times 272443,50=R 19071,05$ Value of car at end of third year $=R 253372,45 ~ V$			(3)	1 mark for the value for second year 1 mark for the value for the third year 1 mark for Answer
	2.1.2	$\begin{aligned} & S I=\frac{\text { P.r.t }}{100} \\ & r=\frac{1.100}{\text { P.t }}=\frac{39500 \times 100}{315000 \times 3} \sqrt{ } \\ & =\frac{3950000}{945000} \\ & \therefore r=4,18 \% \mathrm{~V} \end{aligned}$	(3)	1 mark for the formula 1 mark for correct substitution 1 mark for answer

2.2	$\begin{aligned} & \begin{array}{l} \text { No. of pupils }=720 \\ \text { Ratio of senior pupils to junior pupils } \\ \text { Sum of ratio }=4: 5 \\ \\ \text { Sun } \end{array}=4+5=9 \end{aligned}$ $\begin{aligned} \text { No. of junior pupils in the school } & =\frac{5}{9} \times \frac{750}{1} \sqrt{ } \\ & =\frac{5}{1} \times \frac{80}{1} \\ & =400 \sqrt{ } \end{aligned}$ Hence there are 400 junior pupils in the school						(2)	1 mark for calculation 1 mark for answer
2.3	Let amount for worker C be represented by x If C gets x Then B gets $100+x$ And A gets $200+(100+x)$ Thus $\begin{aligned} x+(100+x)+200+(100+x) & =1300 \\ 3 x+400 & =1300 \\ 3 x & =1300-400 \\ 3 x & =900 \end{aligned}$ $\begin{aligned} & \frac{3 x}{x}=\frac{900}{3} \\ & x=300 \end{aligned}$ Hence Worker C will get R300,00						(2)	1 mark for calculation 1 mark for the answer
							[10]	
QUESTION 3								
3.1		0 32	20 68	40 104	60 140	$\begin{array}{r} \hline 80 \\ \hline 176 \\ \hline \sqrt{ } \text { V } \end{array}$	(2)	2 marks for correctly completing the table 1 mark for a wrong value in table

QUESTION 4				
4.1	4.1.1	$\begin{aligned} & 24 x^{3} y^{2}-8 x^{2} y-16 x^{2} y^{2} \\ & =8 x^{2} y(3 x y-1-2 y) \end{aligned}$	(2)	Answer
	4.1.2	$\begin{aligned} & m^{2}(m-2)-4(m-2) \\ = & (m-2)\left(m^{2}-4\right) \downarrow \\ = & (m-2)[(m-2)(m+2)] \end{aligned}$	(3)	1 mark for taking out correct factor 2 marks Factorising to get difference of 2 squares
4.2	4.2.1	$\begin{aligned} & 4 x-(3 x-7)-(2 x-3)=8(x-1) \\ & 4 x-3 x+7-2 x+3=8 x-8 \downarrow \\ &-x+10=8 x-8 \\ &-x-8 x=-8-10 \\ &-9 x=-18 \downarrow \\ & \frac{-9 x}{-9}=\frac{-18}{-9} \end{aligned}$	(3)	1 mark for removing the brackets 1 mark for simplifying and finding the like terms Answer
	4.2.2	$\begin{aligned} & \frac{x^{2}}{x^{2}-3 x}=\frac{x-3}{x-5} \\ & \frac{x^{2}}{x(x-3)}=\frac{x-3}{x-5} \\ & \frac{x}{x-3}=\frac{x-3}{x-5} \\ &(x-3)(x-3)=x(x-5) \\ & x^{2}-6 x+9=x^{2}-5 x \\ & x^{2}-x^{2}-6 x+5 x=-9 \\ &-x=-9 \\ & \therefore x=9 \end{aligned}$	(4)	1 mark for factorising left side 1 mark for cross multiplication 1 mark for simplifying like terms Answer
	4.2 .3	$\begin{aligned} & 2^{4 x}=2^{8} \\ & 4 x=8 \\ & x=2 \end{aligned}$	(2)	1 mark for writing 256 in exponential form Answer

4.3	4.3.1	$\begin{aligned} & 3^{2 n+3} \cdot 3^{-n-5} \\ &=3^{2 n+3+(-n-5)} \\ &=3^{2 n+3-n-5} \\ &=3^{n-2} \end{aligned}$	(2)	1 mark for simplification 1 mark for answer
	4.3.2	$\begin{aligned} & \frac{15 a(\mathrm{ab})^{2}}{7 c^{5}} \div \frac{5 a b}{21 c^{3}} \\ & =\frac{15 a^{3} b^{2}}{7 c^{5}} \div \frac{21 c^{3}}{5 a b} \\ & =\frac{3 a^{2} b}{7 c^{2}} x \frac{3}{1} \sqrt{ } \\ & =\frac{9 a^{2} b}{7 c^{2}} \sqrt{ } \end{aligned}$	(3)	1 mark for changing division to multiplication and inverting fraction on the right 1 mark for simplification of numerical coefficients Answer
	4.3.3	Let $54321=x$ Then $\begin{aligned} & 54323=x+2 \\ & 54319=x-2 \end{aligned}$ And $\begin{aligned} 54321^{2}-(54 \text { 323) (54 319) } & =x^{2}-(x+2)(x-2) \downarrow \\ & =x^{2}-\left(x^{2}-4\right) \\ & =x^{2}-x^{2}+4 \\ & =4 \sqrt{ } \end{aligned}$	(2)	1 mark for equation Answer
			[21]	

QUESTION 6				
6.1	6.1.1	$\begin{aligned} \text { Volume of prism } & =\text { base area } \times \text { height } \\ & =1 \times \mathrm{b} \times \mathrm{h} \\ & =9 \mathrm{~m} \times 7 \mathrm{~m} \times 5 \mathrm{~m} \\ & =315 \mathrm{~m}^{3} \quad \sqrt{ } \end{aligned}$	(2)	Formula Answer
	6.1 .2	$\begin{aligned} 1 \mathrm{~m} & =100 \mathrm{~cm} \\ 1 \mathrm{~m}^{3} & =1000000 \mathrm{~cm}^{3} \\ 315 \mathrm{~m}^{3} & =315 \times 1000000 \mathrm{~cm}^{3} \\ 315 \mathrm{~m}^{3} & =315000000 \mathrm{~cm}^{3} \end{aligned}$	(1)	Correct conversion units Answer
6.2	6.2 .1	Let the number of yards be represented by k $\begin{aligned} 1 \text { metre } & =1,094 \text { yards } \\ 5 \text { metres } & =k \text { yards } \\ k & =5 \times 1,094 \\ k & =5,47 \text { yards } \end{aligned}$ \therefore The sister must buy 5,47 yards of cloth material. V	(2)	Cross multiplication Answer
	6.2 .2	$\begin{aligned} & \text { Let length in metres be } p \\ & 1 \text { metre }=1,094 \text { yards } \\ & \mathrm{p} \text { metres }=8 \text { yards } \\ & 1,094 \mathrm{p}=8 \\ & \mathrm{p} \quad=\frac{8}{1,094}=7,31 \text { metres } \\ & \text { The extra length }=7,31-5 \\ &=2,31 \text { metres } \quad V \end{aligned}$ Hence 2,31 metres of the cloth material will be left over after making Andiswa's dress.	(2)	Converted units Answer

6.3	6.3.1	$\begin{aligned} \mathrm{BF}^{2} & =(15 \mathrm{~cm})^{2}+(8 \mathrm{~cm})^{2} \text { Pythagoras Theorem } V \\ & =225 \mathrm{~cm}^{2}+64 \mathrm{~cm}^{2} \\ \mathrm{BF} & =\sqrt{289 \mathrm{~cm}^{2}} \\ \mathrm{BF} & =19 \mathrm{~cm} \sqrt{ } \end{aligned}$	(2)	1 mark for stating theorem 1 mark for correct answer
	6.3.2	In Δ DFE and $\triangle B A C$ $D F=B A$ opposite sides of rect. ABDF $\sqrt{ }$ FE $=A C$ opposite sides of rect. ACEF V $D E=B C$ opposite sides of rect. BCED V $\triangle D F E \equiv \Delta B A C$ SSS	(4)	1 mark for each reason
			[13]	
QUESTION 7				
7.1	7.1.1	$\begin{aligned} \text { Fraction allocated to defence } & =\frac{43,2^{\circ}}{360^{\circ}} \\ & =\frac{3}{25} \end{aligned}$	(1)	Answer simplified
	7.1 .2	$\begin{aligned} & \text { Welfare }-\frac{79,2}{360} \times 100=22 \% \\ & \text { Education }-\frac{97,2}{360} \times 100=27 \% \\ & \hline \end{aligned}$	(2)	1 mark for each correct answer
	7.1.3	Percentages are 6; 12; 15; 18; 22 and 27	(2)	1 mark for Stem-Leaf Diagram 1 mark for correct order Do not penalise for using wrong percentages from QUESTION 7.1.2
	7.1 .4	$\begin{aligned} \text { Mean } & =\left(\frac{15+6+12+18+22+27}{6}\right) \% \\ & =\frac{100}{6} \% \mathrm{~V} \\ & =16,7 \% \mathrm{~V} \end{aligned}$	(2)	Sum of percentages Answer Do not penalise for using wrong percentages from QUESTION 7.1.2

7.5	7.5.1	$\begin{aligned} P \text { (blue socks or yellow socks) } & =\frac{2}{14}+\frac{3}{14} \\ & =\frac{5}{14} \sqrt{ } \end{aligned}$	(1)	1 mark for correct answer
	7.5.2	$\begin{aligned} \mathrm{P} \text { (no white socks) } & =\frac{14}{14}-\frac{5}{14} \\ & =\frac{9}{14} \sqrt{ } \end{aligned}$	(1)	1 mark for correct answer
	7.5.3	$\begin{aligned} P(\text { odd numbered pairs of socks }) & =\frac{3}{14}+\frac{5}{14} \\ & =\frac{8}{14} \\ & =\frac{4}{7} \sqrt{ } \end{aligned}$	(1)	1 mark for correct answer
			[19]	
		TOTAL:	100	

