Province of the
EASTERN CAPE EDUCATION

SENIOR PHASE

GRADE 9

NOVEMBER 2012

MATHEMATICS MARKING GUIDELINES

MARKS: 100

This marking guideline consists of 12 pages.

2.2	2.2.2	$17856=1,7856 \times 10^{4} \quad V$	(1)	Correct answer
2.3	2.3.1	$\begin{aligned} & \text { Principal is R1 } 500-\mathrm{R} 150=\mathrm{R} 1350 \\ & \text { SI }=\mathrm{P} \times \mathrm{R} \times \mathrm{T} \\ &=\mathrm{R} 1350 \times \frac{18}{100} \times 3 \\ &=\mathrm{R} 729 \\ & \text { Amount paid }=\text { Principal }+ \text { Interest }+ \text { Deposit } \\ &=\mathrm{R} 1350+\mathrm{R} 729+\mathrm{R} 150 \\ &=\mathrm{R} 2229 \end{aligned}$	(4)	Calculating the principal Formula Interest Answer
	2.3.2	$\begin{aligned} \text { Monthly instalment } & =\frac{\text { Principal }+ \text { Interest }}{36}+\text { insurance } \\ & =\frac{R 2079}{36}+\text { insurance } \\ & =\text { R57,75 }+ \text { R10,50 } \\ & =\mathrm{R} 68,25 \end{aligned}$	(1)	Answer
			[9]	
QUESTION 3				
3.1		 Structure 5	(1)	Correct drawing

3.2	3.2.1	$\begin{array}{rll} 1^{\text {st }} \text { term }: \frac{1(2)}{2} & =1 \\ 2^{\text {nd }} \text { term }: \frac{2(3)}{2} & =3 \\ 3^{\text {rd }} \text { term }: \frac{3(4)}{2} & =6 \\ 4^{\text {th }} \text { term }: \frac{4(5)}{2} & =10 \\ \text { Therefore } & \frac{n}{2}(n+1) \end{array}$	$\sqrt{ } \sqrt{ }$	(2)	Answer
	3.2.2	$\mathrm{b}=\frac{n}{2}(n+1)$ If $n=6$ $\begin{aligned} & b=\frac{6}{2}(6+1)=3 \times 7 \\ & b=21 \end{aligned}$ 21 blocks can be used to form structure 6		(1)	Answer
3.3			$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	(3)	Minus 1 for any wrong output value
3.4	3.4.1	The y-intercept is 3 i.e. c Take points $(0 ; 3)$ and $(-2 ; 0)$ $\text { If } \begin{aligned} x=-2 ; y & =0 \\ m x+c & =y \\ -2 m+3 & =0 \\ -2 m & =-3 \\ m= & \frac{3}{2} \end{aligned}$ Hence $y=\frac{3}{2} x+3$	$\sqrt{ }$ $\sqrt{ }$	(2)	substituting into formula and calculating m Answer

	3.4.2	$\begin{aligned} \text { If } x & =3 \\ \frac{3}{2} x+3 & =y \\ \frac{3}{2}(3)+3 & =y \\ \frac{9}{2}+\frac{6}{2} & =y \\ \frac{15}{2} & =y \\ y & =7 \frac{1}{2} \end{aligned}$		(4)	Multiplying by LCM Removing the brackets Grouping like terms Answer
3.5	Let the first year's admission be represented by x (any letter can be used) $\begin{aligned} x+2 x+4 x+8 x & =1500 \\ 15 x & =1500 \\ x & =100 \end{aligned}$ Therefore 100 learners were admitted in the first year.			(4)	Representing the unknown Forming the equation Simplifying left hand side Answer
				[14]	
QUESTION 4					
4.1		$\begin{aligned} & -81 p^{2} q^{3} \\ & q\left(1-9 q^{2}\right) \\ & q[(1-3 q)(1+3 q)] \end{aligned}$		(4)	Common factor and difference of 2 squares Correct factors of difference of 2 squares
4.2	4.2.1	$\begin{aligned} & (3 x-2)(5 x+1) \\ & =15 x^{2}+3 x-10 x-2 \\ & =15 x^{2}-7 x-2 \end{aligned}$		(2)	Removing brackets Answer

	4.2.2	$\begin{aligned} & \frac{12 x^{2} y^{3} z^{4}}{8 x^{3} y^{2} z^{2}} \times \frac{8 x^{2} y^{3}}{16 x y} \\ & =\frac{96 x^{4} y^{6} z^{4}}{128 x^{4} y^{3} z^{2}} \\ & =\quad \frac{3 y^{3} z^{2}}{4} \end{aligned}$	(4)	Product of numerator and Product of denominator Answer
4.3	4.3.1	$\begin{aligned} \frac{x-6}{2}+\frac{3(x+8)}{4} & =x+3 \\ \frac{4(x-6)}{2}+\frac{12(x+8)}{4} & =4(x+3) \\ 2(x-6)+3(x+8) & =4(x+3) \\ 2 x-12+3 x+24 & =4 x+12 \\ 5 x+12 & =4 x+12 \\ 5 x-4 x & =12-12 \\ x & =0 \end{aligned}$	(4)	Simplifying the left hand side and the right hand side Grouping like terms Answer
	4.3.2	$\begin{aligned} 2^{2 x} & =64 \\ 2^{2 x} & =2^{6} \\ 2 x & =6 \\ x & =3 \end{aligned}$	(3)	Converting 64 into power Equating exponents Answer
			[17]	
QUESTION 5				
5.1	$\begin{gathered} 180^{\circ}(\mathrm{n}-2)=1260^{\circ} \\ \frac{180(n-2)}{180}=\frac{1260}{180} \\ \mathrm{n}-2=7 \\ \mathrm{n}=7+2 \\ \mathrm{n}=9 \end{gathered}$ Hence, if the sum of the angles of a polygon is 1260°, it has 9 sides.		(2)	Simplification Answer

5.2		(4)	Statements with reason Answer
5.3	$\begin{aligned} \frac{6}{12} & =\frac{10}{x} \\ 6 x & =120 \\ \frac{6 x}{6} & =\frac{120}{6} \\ x & =20 \mathrm{~cm} \end{aligned}$ The length of the longest side is 20 cm .	(2)	Setting up the proportional sides Answer
5.4	5.4.1$\mathrm{L}(3 ;-5)$ V $\mathrm{M}(5 ;-6)$ $\mathrm{N}(6 ;-5)$ V $\mathrm{O}(5 ;-3)$	(2)	2 marks for 4 coordinates correct 1 mark for 1 or 2 wrong coordinate No mark for 1 correct co-ordinate

QUESTION 6				
6.1	 $P Q R+Q 1 S=180-$ sum of angles on a straight. line but $\mathrm{P} \widehat{Q} \mathrm{R}=\mathrm{Q} \hat{T} \mathrm{~S}$ corresponding angles, $\mathrm{PQ} / / \mathrm{ST}$ Therefore $\mathrm{P} \widehat{Q} \mathrm{R}=85^{\circ}$		(3)	Obtaining angle QTS Equating with reason angles PQR and QTS Answer
6.2	6.2.1	$\mathrm{x}_{1} \downarrow$	(1)	Answer
	6.2.2	$\mathrm{x}_{4} \quad \mathrm{~V}$	(1)	Answer
			[5]	
QUESTION 7				
	7.1.1	$\begin{aligned} S & =\frac{D}{t}=\frac{20 \mathrm{~km}}{1,25} \\ & =16 \mathrm{~km} / \mathrm{h} \end{aligned}$ Speed of train B is $16 \mathrm{~km} / \mathrm{h}$	(1)	Answer
	7.1.2	$\text { Speed of train A } \begin{aligned} \frac{D}{t} & =\frac{30}{0,75} \\ & =40 \mathrm{~km} / \mathrm{h} \end{aligned}$ Therefore Train A is faster than Train B because it runs at a speed of $40 \mathrm{~km} / \mathrm{h}$ whilst Train B runs at a speed of $16 \mathrm{~km} / \mathrm{h}$. V	(2)	Answer Reason
7.2	7.2.1	$\begin{aligned} \text { In } \triangle \mathrm{ADB} & \text { OR } \triangle \mathrm{ADC} \\ \mathrm{DB} & =\mathrm{DC} \\ & =2,1 \mathrm{~cm} \\ \mathrm{AD}^{2} & =A B^{2}-\mathrm{DB}^{2} \text { Pythagoras Theorem } \sqrt{ } \\ & =(3 \mathrm{~cm})^{2}-(2,1 \mathrm{~cm})^{2} \\ & =9-4,41 \\ & =4,59 \\ \mathrm{AD} & =\sqrt{4,59} \\ & =2,14 \mathrm{~cm} \quad \sqrt{ } \end{aligned}$	(2)	Theorem Answer

QUESTION 9			
9.1	9.1 .1		
Hand length and Shoe Size Correlation Graph			

Labelling x -axis 1 mark;
Labelling y-axis 1 mark;
Title of graph 1 mark
Plotting points 2 marks

			(5)
	9.1 .2	The bigger the shoe size the longer the length of the hand and vice versa.	Correct reason for relation.

