Downloaded from Stanmorephysics.com

education

Department: Education PROVINCE OF KWAZULU-NATAL

> NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCES P2 (CHEMISTRY)

COMMON TEST

JUNE 2019

......

MARKS: 100

.

TIME : 2 Hours

This question paper consists of 9 pages and 2 data sheets.

Please turn over

INSTRUCTIONS AND INFORMATION TO CANDIDATES

2

NSC

- 1. Write your name on the ANSWER BOOK.
- Answer ALL the questions in the answer book.
- You may use a non-programmable calculator.
- You may use appropriate mathematical instruments.
- Number the answers correctly according to the numbering system used in this question paper.
- YOU ARE ADVISED TO USE THE ATTACHED DATA SHEETS.
- Give brief motivations, discussions, et cetera where required.
- Show the formulae and substitutions in ALL calculations.
- Round off answers to a minimum of TWO decimal places

QUESTION 1: MULTIPLE- CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 - 1.7) in the ANSWER BOOK. Eg 1.8 A

- 1.1 The shape of the OF₂ molecule is :
 - A Trigonal pyramidal
 - B Linear
 - C Bent
 - D Tetrahedral

(2)

(2)

- 1.2 Which statement BEST explains the formation of the dative bond between ammonia (NH₃) and the hydrogen ion (H⁺)?
 - A Both NH₃ and H^{*} are polar
 - B The NH₃ molecule has a lone pair of electrons and the H^{*} ion has an empty orbital.
 - C H⁺ ion is regarded as a proton and is attracted to the electrons on the nitrogen atom of the NH₃ molecule.
 - D The electronegativity of the nitrogen atom is greater than the electronegativity of hydrogen.
- 1.3 Which ONE of the following statements concerning ideal gases is INCORRECT?
 - A Ideal gases do not exert pressure
 - B Ideal gas molecules do not occupy a volume
 - C The collision between ideal gas molecules is elastic
 - D There are no intermolecular forces between ideal gas molecules. (2)
- 1.4 Which ONE of the following statements regarding the effect of intermolecular forces and some physical properties is INCORRECT?
 - A The stronger the intermolecular force, the slower the rate of evaporation.
 - B The weaker the intermolecular force, the lower the boiling point.
 - C The stronger the intermolecular force, the higher the surface tension.
 - D The stronger the intermolecular force, the lower the melting point.. (2)

1.5 2,50 mol of SO₂ and 1 mol of O₂ are sealed in a 1 dm³ flask and allowed to react completely at STP according to the following balanced equation.

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

The TOTAL number of moles of gas in the flask at the END of the reaction is:

- A 2
- B 3,50
- C 2,50
- D 0,50
- 1.6 The gas law that expresses the relationship between pressure and temperature of a gas is known as:
 - A Charle's Law
 - B Gay-Lussac Law
 - C Boyle's Law
 - D Avogadro's Law

(2)

(2)

- 1.7 The type of intermolecular force involved when CO₂ is added to water is :
 - A Dipole- induced dipole forces
 - B London forces
 - C Covalent bonds
 - D Ion induced dipole forces

(2)

TOTAL : SECTION A [14]

Consider the substances in the table below. Select the correct answer for each of the questions that follow. Write down only the LETTER that corresponds to your choice

	SUBSTANCE		SUBSTANCE
Α.	HCN	F	H ₂ O
в	MgCl ₂	G	CCl ₄
С	.12	н	CO ₂
D	NH4 ⁺	1	C ₂ H ₂
E	.Cl ₂	J	H ₂ S

2.1 Identify

2.2

2.3

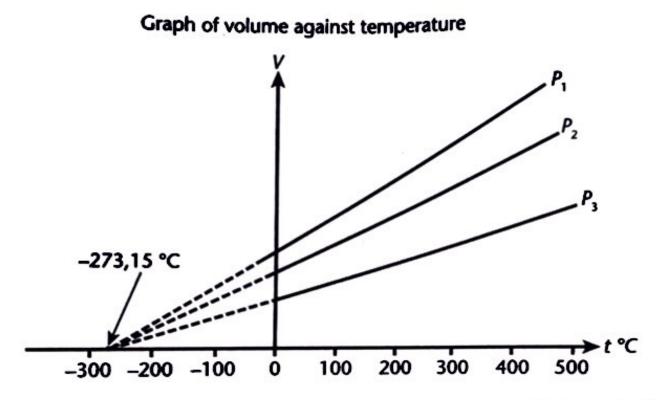
2.4

2.1.1 TV	VO molecules that have triple bonds.	(2)
	VO substances that when mixed together will result in ion-dipole rces of attraction.	(2)
2.1.3 A	non-polar LIQUID at room temperature	(1)
2.1.4 A	MOLECULE having a tetrahedral shape.	(1)
2.1.5 A	SOLID that is insoluble in water.	(1)
	GAS at room temperature with pure covalent bonds between its oms.	(1)
	nds F (H ₂ O) and J (H ₂ S) are hydrides of group 6 elements. H ₂ O has not mass than H ₂ S, but a higher boiling point than H ₂ S.	
	ally why H ₂ O has a higher boiling point than H ₂ S, by referring to the strengths of the intermolecular forces in each and the energy	(4)
Draw the	Lewis structure for compound G (CH ₄)	(2)
Compour	d H (CO ₂) has polar covalent bonds in the molecule.	
2.4.1 Is t	the compound CO ₂ polar or non-polar? Explain fully.	(3)
2.4.2 Na	me the type of intermolecular forces found in this compound.	(1) [18]

Grade 11 learners investigated the effect of intermolecular force on capillarity. They pour 100ml each of water; glycerine and nail polish remover in separate beakers. A capillary tube is inserted into each liquid and after a while, the level of liquid in the capillary tube is measured.

Capillary tube

They recorded their results in a table as follows:


Liquid	Height (mm)
Water	19
Glycerine	5
Nail polish remover	26

3.1	State the dependent variable in the above investigation.	(1)
3.2	Which liquid displayed the greatest degree of capillarity?	(1)
3.3	Explain the answer to question 3.2 above.	(3)
3.4	Use the results in the table and arrange the liquids in order of INCRE STRENGTH of intermolecular force that is, from the weakest intermo	lecular force
	to the strongest intermolecular force.	(2)
3.5.	Identify the liquid with the highest boiling point.	(1) [8]

Physical Stanmore New Sics.com

QUESTION 4

4.1 The graph below shows the relationship between the volume and Celsius temperature of an enclosed gas maintained at a constant pressure, P₁. The experiment is repeated for different constant pressures P₂ and P₃.

- 4.1.1 Give the name, and state in words, the Law that is illustrated in the graph. (3)
- 4.1.2 Apart from pressure, state ONE other variable that must be kept constant for each experiment (1)
- 4.1.3 What is the relationship between the volume and temperature of the gas? (1)
- 4.1.4 Which one of the 3 pressures, P_1 ; P_2 or P_3 is the HIGHEST? (1)
- 4.1.5 Fully explain the answer to question 4.1.4 above. Use a relevant equation to support your explanation. (3)
- 4.2 A 10 dm³ steel vessel that holds a sample of oxygen gas at 25°C and 100kPa develops a leak. Some of the oxygen gas escapes before the leak is repaired. The pressure of the O₂ in the vessel after the leak is repaired is 55kPa. The temperature remains at 25°C.

Calculate the mass of oxygen gas that leaked.

(8) [17]

A compound contains the elements carbon, hydrogen and oxygen only. It consists of 54.56% carbon and 36.36% hydrogen. The molar mass of the compound is 132 g.mol⁻¹.

5.1	State the definition of empirical formula.	(2)
5.2	Calculate the empirical formula of the compound.	(6)
5.3	Determine the molecular formula of the compound.	(2) [10]

QUESTION 6

Iron is recovered from iron ore (Fe₂O₃) in a blast furnace. The following reaction takes place.

 $Fe_2O_3(s) + 3CO(g) \rightarrow 2 Fe(s) + 3CO_2(g)$

In one such reaction, 160g of impure iron ore was reacted and 63 dm³ of CO₂ was produced at STP.

6.1	Write down the definition of the mole.	(2)
6.2	Calculate the number of CO2 molecules that formed at STP	(4)
6.3	Calculate the maximum no of moles of iron that will be formed in the above reaction.	(2)
6.4	Calculate the percentage purity of the iron ore sample used.	(4) [12]

QUESTION 7

Industrially, vanadium metal, (V) which is used in steel alloys can be obtained by reacting vanadium pentoxide(V_2O_5) with calcium at high temperatures. The balanced equation for the reaction is:

 $5Ca + V_2O_5 \rightarrow 5CaO + 2V$

During an industrial process 31850 g of V₂O₅ reacts with 2 x 10⁴ g of Ca.

7.1	State the definition of a limiting reagent.	(2)

- 7.2 Calculate the theoretical yield of vanadium. (6)
- 7.3 Calculate the percentage yield if 8,67 x 10³ g of vanadium is obtained. (2)

[10]

4.14 g of solid LiNO₃ is first dissolved in a small amount of water and then made up to a certain final volume so that the concentration of the solution is $0,05 \text{ mol.dm}^3$

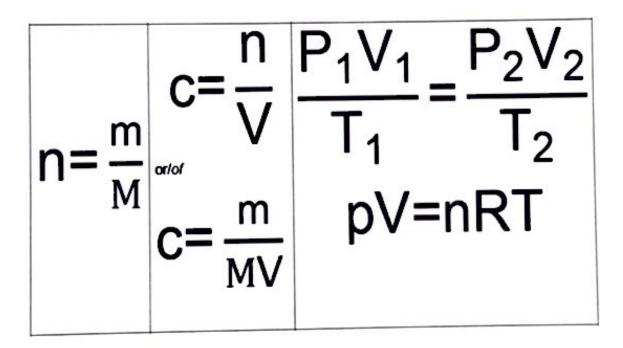
8.1	Write down the definition of concentration.	(2)
8.2	Calculate the number of moles of LiNO ₃ used.	(2)
8.3	Calculate the final volume of the solution.	(3)
8.4	An additional 250 cm ³ of water is now added to this solution. Calculate the new concentration of the solution	(4)
		[11]

TOTAL MARKS: 100

۱

-	Pleas	-																						pernes	ag ido
				0,7	20.00		0,7 Cs	55		0,8 R	3	. 0	0,8	-		0,9 Z	=	7	1,0	ω.		2,1 I -		3-	
			F	0,9		ω	0,9	5	6	1,0	7	9	1,0	ø		90 1,2	-		1,5	+	_				
			5	Ra	88	137	Ва	56	8	1	38	\$	Ca	20	24	Mg	12	9	Be	4				∃ ∾	
				Ac	89	13	5	5		1,2	3	4	1,3 0											ω	
			L	0		9	يم 1,6	7	9	1,4	9	G	0 1,5	-											
				_		179	Ŧ	72	91	Ņ	\$	&	=	-								*		*	
232	≓ ≈	10	င္ပ	58		181	Ta	73	92	NЬ	41	51	1,6	1.11					Flaktn	2		EYISL		5	н
	P 91	Ŧ	P	59						1,8	*	0	1,6		Ben	Ą		Barro	Electronegativity			KEYISLEUTEL		6	ABL
		-		-		184	٤	4	6	Mo 1,9	42	Ň	റ 1,5	24	aden	roxin			ituvity			-			Ξ÷
238	C 92	Ŧ	đ	6		186	Re	75		7	₽	5	1,5 Mn	25	le ve	nate r	Г				1		At	7	THE
÷	N 93		P	61		190	0s	76	101	2,2 Ru	4	56	1,8 Fe	26	Benaderde relatiewe atoommassa	Approximate relative atomic mass	•	63,5	1,9 2	29	•	Atoomgetal	Atomic number	00	TABLE 3: THE PERIODIC TABLE
1	P 2	150	Sm	62		192	=	77	103	2,2 Rh		59	1,8 Co	27	atoom	atomi	L			,	1	petal		9	nodi
:	>		m							2,2	3		1,8		mass	c ma			Simbor					-	C T
	A 95	152	2	ω		195	₽	78	<u>6</u>	Pd	_	59	0.11.1	-		ŝŝ			2					10	BE
1	C _m	157	Gd	64		197	₽	79	108	1,9 Ag		63,5	1,9 Cu											1	EOF
ļ	Bk 97	159	F	65		20	Нg	80	11	1,7		65	1,6											12	
	0 9	163	9	66			1,8 1,8	-		1,7			1,6			1,5 P			2,0					ت ا	ELEMENTS
		-		-		4	1,8		(J)	1,8		•	9) 1,8		7	1,8	_		2,5	-					TS
	5 99	165	Fo	67		207	₿	82	119	Sn	50	73		_	28		14	_	-	6				31	
	Field	167	Ψ	68		209	1,9 00		122	1,9 Sb		75	2,0 AS		31	2,1	15		3,0 Z	7				35	
	M 1	169	T	69		F	2,0	1	t	2,1		t	2,4	•		2,5			3,5 O					316	
		-	_	-		\vdash	2,5			2,5		t	2,8	•		3,0			4,0						
		173	9	70		L	A	85	127	-	53	8	Ŗ	35	5,5	å	17	19	Π	9			-	}	
1		175	Ξ	71			R	86	13	×	5	8	X	36	40	₽	18	20	Ň	10	4	He		<u>}</u>	

,


.

Downloaded from Stanmorephysics.com

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p*	1,013 x 10º Pa
Molar gas volume at STP Molêre gasvolume by STD	V	22,4 dm3-mol-1
Molêre gaskonstante Molar gas constant	R	8.31 J-K-1-mol-1
Standard temperature Standaardtemperatuur	т	273 K
Avogadro's Constant	N of/or Na	6.022x10 ²³ mot ¹
Charge on Electron Lading op elektron	e	-1,6 x 10 ⁻¹⁹ C

TABLE 2: FORMULAE/TABEL 2: FORMULES

