

Basic Education

KwaZulu-Natal Department of Basic Education REPUBLIC OF SOUTH AFRICA

PHYSICAL SCIENCE (P1) (PHYSICS)

COMMON TEST

MARCH 2016

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS:

50

TIME:

1 hour

This question paper consists of 6 pages and a data sheet.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Read these instructions carefully before answering the questions.

- 1. Answer all the questions.
- 2 Round off your final numerical answer to a minimum of **TWO DECIMAL** places.
- 3. Non programmable calculators may be used.
- 4. Appropriate mathematical instruments may be used.
- 5. Number the answers correctly accordingly to the numbering system used in this question paper.
- 6. A data sheet is attached for your use.
- 7. Whenever a motivation or discussion is required be brief.

QUESTION 1: MULTIPLE - CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A-D) next to the question number (1.1-1.3) in your ANSWER book, e.g. 1.3 D.

- 1.1 Which one of the following pairs can be classified as vectors?
 - A Frictional force and mass
 - B Mass and inertia
 - C Inertia and weight
 - D Weight and frictional force
- 1.2 Consider a man pressing a book against a wall with a force F

The reaction force to force F will be:

- A The force with which the wall presses on the book
- B The force with which the book presses on the wall
- C The force with which the book presses on the man
- D The frictional force between the book and the wall
- 1.3 Two spherical objects \mathbf{m}_1 and \mathbf{m}_2 with their centres \mathbf{d} metres apart, exert a gravitational force of \mathbf{F} on each other. What will be the magnitude of the force if the distance between the objects is halved?
 - A 4F
 - B 2F
 - C 1/4F
 - D 1/2F

 $3 \times 2 = [6]$

QUESTION 2

A 250 N weight hangs from a beam by means of two inelastic cords. The cords make angles of 40° and 50° with the beam.

The weight is in equilibrium.

- 2.1 What is meant by equilibrium? (2)
- 2.2 Draw a triangle vector diagram to represent the forces acting on the weight and indicate at least 2 angles. (4)
- 2.3 Determine the tensions, T_1 and T_2 in the cords. (4)

[10]

QUESTION 3

 $(\bar{})$

A **6 kg** block placed on a rough horizontal surface is connected to a **4 kg** block by a piece of string that runs over a frictionless pulley as shown in the figure below. The blocks accelerate at **0,75 m.s**⁻².

3.1 State Newton's second law of motion in words.

(2)

3.2 Draw a force diagram for the 6 kg block.

- (4)
- 3.3 By applying Newton's second law to each of the blocks, determine the magnitude of the frictional force acting on the **6 kg** block as it moves.
- (6)

3.4 Determine μ_k , coefficient of kinetic friction.

(3)

A force F is now applied on the 6kg block as shown, such that the blocks are now at rest.

How will this now affect the following:

3.5 The magnitude of the frictional force? Explain

(3)

3.6 μ_k . (Choose from: INCREASE, DECREASE OR REMAIN THE SAME)

(1)

3.7 The tension T in the string. (Choose from: INCREASE, DECREASE OR REMAIN THE SAME)

(2)

QUESTION 4

The Earth and Mars are positioned in the universe such that they are 2,25 x 10^8 m apart. The radius of the Earth is $6,37 \times 10^6$ m. If the radius and mass of Mars is $3,39 \times 10^6$ m and $6,39 \times 10^{23}$ kg respectively.

4.1 State Newton's Universal Law of gravitation. (2)4.2 Calculate the force that Mars exerts on Earth. (5)4.3 Is the force calculated in 4.2 a contact or non-contact force? (1) 4.4 Calculate the acceleration due to gravity on Mars. (4) 4.5 What will be the force that the Earth exerts on Mars? (1)[13]

TOTAL: 50

DATA FOR PHYSICAL SCIENCES PAPER I (PHYSICS)

TABLE 1: PHYSICAL CONSTANT

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m.s ⁻²
Gravitational constant	G	6,67 x 10 ⁻¹¹ N.m ² . kg ⁻²
Charge on electron	e	-1,6 x 10 ⁻¹⁹ C
Speed of light in a vacuum	c	$3.0 \times 10^8 \mathrm{m.s^{-1}}$
Coulomb's constant	k	$9.0 \times 10^9 \text{ N.m}^2\text{C}^{-2}$
Electron mass	m _e	9,11 x 10 ⁻³¹ kg
Permittivity of free space	εο	8,85 x 10 ⁻¹² F.m ⁻¹

TABLE 2: FORMULAS

MOTION

$vf = vi + a\Delta t$	$\Delta x = vi \Delta t + \frac{1}{2} a \Delta t^2$
$vf^2 = vi^2 + 2a \Delta x$	$\Delta x = \left(\frac{v_f + v_1}{2}\right) \Delta t$

FORCE

PUNCE	
Fnet = ma	P = mv
$F = \frac{Gm_1m_2}{r^2}(G=6,67 \times 10^{-11} \text{ N.m}^2.\text{kg}^{-2})$	$F\Delta t = \Delta p = mv_f - mv_1$
$\mu_{s} = \frac{f_{s}(max)}{F_{N}}$	$\mu_k = \frac{f_k}{F_N}$
τ=Fr	