

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS

COMMON TEST

JUNE 2021

MARKS:

50

TIME:

1 hour

This question paper consists of 6 pages and 1 diagram sheet.

NSC

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9.

 A DIAGRAM SHEET for QUESTION 3.2 is attached at the end of this question paper. Detach the DIAGRAM SHEET and hand it in together with your ANSWER BOOK.
- 10. Write neatly and legibly.

QUESTION 1

The first three terms of a quadratic number pattern are 50; 35 and 24.

- 1.1 Write down the next two terms in this number pattern. (2)
- Determine the general term of this number pattern in the form $T_n = an^2 + bn + c$. (4)
- 1.3 Calculate the value of the 30th first difference of this number pattern. (3)

[9]

QUESTION 2

Given: $f(x) = -2x^2 - 4x + 30$

- 2.1 Determine the x-intercepts of f. (3)
- 2.2 Determine the equation of the axis of symmetry of f. (2)
- 2.3 Determine the range of f. (2)
- Graph g is obtained by reflecting graph f in the x-axis and then translating it 4 units to the right. Determine the equation of graph g, in the form $g(x) = a(x+p)^2 + q$. (3)

[10]

QUESTION 3

The diagram below shows the graph of hyperbola f passing through the point (-3;4) and having asymptotes intersecting at (-2;1).

3.1 Determine the equation of f in the form
$$f(x) = \frac{a}{x+p} + q$$
. (3)

The graph f is drawn on the grid on the diagram sheet. On the same grid, sketch the graph of $g(x) = 2^{-x} - 4$. Clearly label all the intercepts that g makes with the axes and show any asymptotes of g. (5)

3.3 If it is given that
$$f$$
 and g intersect at $(-3;4)$ and $(-1;-2)$, determine the values of x for which $g(x) \ge f(x)$.

[11]

QUESTION 4

4.1 P(-4;3) and Q(2;k) are two points in the Cartesian plane such that the gradient of PQ is positive and the distance PQ is $2\sqrt{10}$ units.

4.1.1 Show that
$$k = 5$$
. (3)

4.2 In the diagram A(-1; 4) and C(4; -1) are points in a Cartesian plane. B is a point on the x-axis such that $B\hat{A}C = 54,46^{\circ}$.

4.2.1 Calculate the size of (θ) , angle of inclination of AC. (3)

4.2.2 Calculate the coordinates of B. (4)

[14]

QUESTION 5

Consider the following equation: $3\sin^2 x + \cos^2 x - 5 = 7\sin x$.

Show that the equation $3\sin^2 x + \cos^2 x - 5 = 7\sin x$ can be written as $2\sin^2 x - 7\sin x - 4 = 0$. (1)

Hence, or otherwise, determine the general solution of $3\sin^2 x + \cos^2 x - 5 = 7\sin x$. (5)

[6]

TOTAL: 50

NAME & SURNAME:

DIAGRAM SHEET

QUESTION 3.2

