

Basic Education

KwaZulu-Natal Department of Basic Education REPUBLIC OF SOUTH AFRICA

MATHEMATICS P2

COMMON TEST

JUNE 2016

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

TIME: 2 hours

This question paper consists of 8 pages and 3 diagram sheets.

INSTRUCTIONS AND INFORMATION

Read the following instruction carefully before answering the questions.

- 1. The question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Clearly show all calculations and diagrams that you have used in determining your answers.
- 4. You may use an approved scientific calculator (non-programmable and non-graphical).
- 5. If necessary round off answers to **TWO** decimal places, unless otherwise stated.
- 6. Answers only will not be awarded full marks.
- 7. Diagrams not necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Write neatly and legibly.

In the diagram below PQRS is a square with sides of 5 units. The coordinates of R is (1;-2). PQ is parallel to the x-axis.

- 1.1.1 Write down the coordinates of Q. (1)
- 1.1.2 Write down the coordinates of S. (1)
- 1.1.3 Write down the equation of PQ. (1)
- 1.1.4 Write down the equation of QR. (1)

In the sketch below A(0;4), B(-4;-3) and C(4;-2) are the vertices of $\triangle ABC$. K is the midpoint of AC. AT is drawn with T a point on the x-axis, such that the acute angle between AT and the x-axis is equal to $26,6^{\circ}$. S(p;1) is a point on AT.

- 1.2.1 Determine the coordinates of point K.
- 1.2.2 Calculate the length of AC, correct to 2 decimal places. (2)
- 1.2.3 Calculate the gradients of BK and AC and then show that $B\hat{K}C = 90^{\circ}$. (5)
- 1.2.4 Determine the equation of line BK. (3)
- 1.2.5 Calculate the area of \triangle ABC, correct to 2 decimal places. (5)
- 1.2.6 Calculate the value of p. (5)

[26]

(2)

2.1 PQRS is a parallelogram. The equation of PQ is $y = \frac{1}{4}x$. The gradient of SP is equal to -1. R is the point (3; 2).

- 2.1.1 Write down the gradient of RQ. (1)
- 2.1.2 Determine the equation of RQ. (2)
- 2.1.3 Calculate the coordinates of point Q. (4)
- 2.1.4 Calculate the size of \hat{SPQ} . (5)
- 2.2 Given A (6; 7), B (0; -1) and C (4; p).

Calculate

- 2.2.1 The length of AB. (2)
- 2.2.2 The value of p if AB = 2 BC, p < 0 (5)

[19]

N.B: Give reasons for your statements and calculations in Questions 3-6.

QUESTION 3

3.1 COMPLETE: The line drawn from the centre of a circle to the midpoint of a chord

.... (1)

3.2

O is the centre of the circle. AB is a chord and $OP \perp AB$. OP is extended and intersects the circle at N. AB = 16 cm and PN = 2 cm. Let OP = x.

3.2.1 Calculate the length of AP.

(2)

3.2.2 Calculate the length of the radius of the circle.

(5)

[8]

4.1 In the figure below O is the centre of the circle and A, B and C are three points on the circumference of the circle. Use the figure and prove the theorem that states that $B\hat{O}C = 2\hat{A}$.

(6)

4.2 In the figure O is the centre of the circle and ABCD is a cyclic quadrilateral.

DA is produced to F such that FA = AC and CB is produced to meet DF at F.

4.2.1 If $\hat{\mathbf{F}} = x$, write down, with reasons, in terms of x,

(a) the size of \hat{A}_1 ;

(4)

(b) the size of \hat{O}_1 .

(2)

4.2.2 If it is further given that FA = DA, find with reasons, the size of \hat{A}_3 .

(6)

[18]

5.1 In the diagram below O is the centre of the circle. G, H, J and K are points on the circumference of the circle.

GOH is a diameter.

Chords GH, JH, KH, KJ and GK have also been drawn.

 $\hat{H}_1 = 26^\circ$.

Calculate, with reasons, the size of

$$5.1.1 \quad \hat{K}_{1}$$
.

(1)

5.1.2 Ĵ.

(3)

5.2 GAFE and FCDE are two circles. Chords GA, AF, EF, CF, CD and DE are drawn. GFC is a straight line. DC produced meets GA produced at B.

$$\hat{E}_1 = 28^{\circ} \text{ and } \hat{E}_2 = 64^{\circ}.$$

Calculate, with reasons, the size of

5.2.1 Ĝ

(2)

5.2.2 \hat{B}

(4)

[10]

frol

In the figure PR and PQ are two tangents drawn from point P to circle AQR. The straight line drawn through P parallel to AR meets QR produced at S, and QA produced at T. The tangent PR cuts QT at B.

$$\operatorname{Let} \hat{\mathbf{R}}_2 = \mathbf{x}$$

6.1 Prove that PTRQ is a cyclic quadrilateral.

(5)

6.2 If it is further given that QA = RA, prove that:

6.2.1 $\hat{S} = x$

(3)

 $6.2.2 \quad PQ = RS$

(5)

6.2.3 PTS is a tangent to circle TAR.

(6) [**19**]

TOTAL MARKS: [100]

DIAGRAM SHEETS: HAND IN WITH YOUR ANSWER BOOK

NAME:

GRADE:

QUESTION 1.2

QUESTION 2.1

QUESTION 3.2

QUESTION 4.1

QUESTION 4.2

QUESTION 5.1

TEAR-OFF SHEET

