

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

JUNE 2019

GRADE 10

PHYSICAL SCIENCES PAPER 1

TIME: 1¹/₂ hours

MARKS: 100

10 pages, 1 data sheet and 1 graph paper

GAUTENG DEPARTMENT OF EDUCATION

PROVINCIAL EXAMINATION

PHYSICAL SCIENCES

TIME: 1¹/₂ hours

MARKS: 100

INSTRUCTIONS

- 1. Write your name in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of **6** questions. Answer ALL the questions.
- 3. Remove the graph paper, page 12 and hand it in with your ANSWER BOOK.
- 4. You may use a non-programmable calculator.
- 5. You may use appropriate mathematical instruments.
- 6. YOU ARE ADVISED TO USE THE ATTACHED DATA SHEETS.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. Write neatly and legibly.
- 9. Start EACH question on a NEW page in the ANSWER BOOK.
- 10. Leave ONE line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 11. Show ALL formulae and substitutions in ALL calculations.
- 12. Round off your FINAL numerical answers to a minimum of TWO decimal places where needed.
- 13. Give brief motivations, discussions, et cetera where required.

SECTION A QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A-D) next to the question number (1.1-1.10) on the answer sheet. Each answer counts TWO MARKS.

- 1.1 What is the magnitude of the angle between the direction of the disturbance and the direction of propagation of a transverse wave?
 - A 0°
 - B 45°
 - C 90°
 - D 180°

- (2)
- 1.2 The diagram shows two waves travelling in the same medium for the same length of time.

The two waves have different...

- A amplitudes.
- B speeds.
- C energies.
- D frequencies.

(2)

- 1.3 Two points on a transverse wave that have the same magnitude of displacement from equilibrium are said to be in phase if these points also have the ...
 - A same direction of displacement and the same direction of motion.
 - B same direction of displacement and the opposite direction of motion.
 - C opposite direction of displacement and the same direction of motion.
 - D opposite direction of displacement and the opposite direction of motion.
- 1.4 If two charges are identical with one having a charge **Q**, and they are brought together to touch each other and are then separated. The new charge on each will be...
 - A Q.
 - B 2Q.
 - $C = \frac{1}{2}Q$
 - D 4Q.

(2)

(2)

(2)

(2)

4

- 1.5 The region in a space where a magnetic material will experiences a force is called a/an ...
 - A charge.
 - B electric field.
 - C magnetic field.
 - D magnetic flux.
- 1.6 Which one of the following is equal to 10 C.s^{-1} ?
 - A 10 V
 - B 10 A
 - C 10 Ω
 - D 10 nC
- 1.7 For which ONE of the quantities below is the CORRECT unit of measurement for the given quantity?

	QUANTITY	UNIT
А	Current	A.s ⁻¹
В	Energy	kW
С	Potential difference	V
D	Resistance	V.s

- 1.8 Consider the following statements concerning ultraviolet radiation:
 - (i) It can be reflected.
 - (ii) It has a longer wavelength than gamma rays.
 - (iii) It is radiated from the sun and may be harmful to humans.
 - A (i) and (ii) only
 - B (ii) and (iii) only
 - C (i) and (iii) only
 - D (i), (ii) and (iii)
- 1.9 Choose the CORRECT combinations below concerning the pitch and loudness of sound.

The pitch and loudness of sound depend on:

	PITCH	LOUDNESS
А	Frequency	Amplitude of vibration
В	Frequency	Speed of vibration
С	Amplitude of vibration	Frequency
D	Speed of vibration	Frequency

1.10 Two pulses travel towards each other as shown in the diagram. When they meet, the resultant displacement and type of interference will be:

	RESULTANT DISPLACEMENT	TYPE OF INTERFERENCE
А	4a	Constructive
В	2a	Constructive
С	-2a	Destructive
D	-4a	Destructive

[20]

SECTION B QUESTION 2

2.1 The diagram below shows two waves A and B of the same wavelength but different amplitudes crossing each other.

- 2.1.1 Define the term wavelength.
- 2.1.2 Draw the shape of the resulting wave as the two waves **A** and **B** cross. On your (4) diagram show the resulting amplitude.
- 2.1.3 Which wave property is illustrated in QUESTION 2.1.2? (2)
- 2.1.4 State the principle used to answer QUESTION 2.1.2.
- 2.2 In the sketch below, not drawn to scale, Q represents an object on the surface of the water in a dam. A person standing on a bridge observes object Q moving up and down. Object Q rises to the top every 5 s.

- 2.2.1 Define the term *period of a wave*.
- 2.2.2 In which direction is object Q about to move? Write only UPWARDS or (2) DOWNWARDS.
- 2.3 Calculate the ...

2.3.1	frequency of the waves.	(4)
2.3.2	speed of the waves.	(4)
		[22]

(2)

(2)

(2)

QUESTION 3

A section of the sound wave produced by a musical instrument is shown below.

- 3.1 Define the term, *pulse*.
- 3.2 Identify the components of the wave labelled
 - 3.2.1 B
 - 3.2.2 A
- 3.3 The highest frequency that a normal human ear can hear is about 20 kHz. A special whistle known as the silent whistle is used to train dogs.

- 3.3.1 If the whistle produces sound waves of wavelength 9 mm, determine, by (5) calculation, whether the human ear will hear the sound produced by this whistle. Take the speed of sound in air to be 342 m.s⁻¹.
- 3.3.2 Name the type of sound produced by the silent whistle.
- 3.4 A sound emitting device is placed between two buildings **A** and **B**, as shown below.

A sound wave emitted from the device strikes building A perpendicularly and returns to the device after 1,0s.

A second sound wave strikes building B perpendicularly and returns to the device after 1,5s. If the speed of sound in air at that point is 340 m.s⁻¹, calculate the distance between the two buildings.

(2)

(1)

(1)

(1)

8

(1)

(4)

QUESTION 4

- 4.1 Radio waves are observed to have a wavelength of 0,14 m.
 - 4.1.1 Give ONE use of radio waves in technology.
 - 4.1.2 Calculate the energy of a photon of these radio waves.
- 4.2 An athlete breaks his leg while jogging and goes to have X-rays taken. X-rays emitted by the x-ray machine have a wavelength of 1, 5 x 10^{-11} m.

4.3	Overe staten	exposure to X-rays can be potentially dangerous. Provide a reasons for this nent.	(2) [10]
	4.2.2	Calculate the frequency of the wave.	(2)
	4.2.1	At what speed do X-rays travel?	(1)

QUESTION 5

5.1 Two insulated, graphite-coated polystyrene spheres A and B are suspended from threads. The spheres are held apart at a small distance. The charges on the spheres **A** and **B** are - 8 C and + 20 C, respectively. When the spheres are released they move towards each other.

- 5.1.1 Explain why the spheres move towards each other when they are released. (2)
- 5.1.2 Which one of the two spheres has excess electrons? Write down SPHERE A or SPHERE B. (1)
- 5.2 The two spheres are allowed to touch each other and then separate.
 - 5.2.1 Calculate the charge on each sphere after contact.
 - 5.2.2 Will the force now be one of ATTRACTION or REPULSION? Give a reason for vour answer. (2) (2)
 - 5.2.3 State the principle of quantisation of charge.
 - 5.2.4 Determine the number of electrons transferred between the two spheres during contact. (4)
 - (14)

(3)

QUESTION 6

6.1 Consider the circuit below. When the switch is open and a voltmeter is connected across the battery it reads the *emf* of the battery. When the switch is closed, ammeter A_1 reads 5A and ammeter A_2 reads 3 A.

- 6.1.1 Define *emf* of a battery.
- 6.1.2 Calculate the effective resistance of the combination of the two resistors. (3)
- 6.1.3 What will be the reading on ammeter A_3 when the switch is closed?

Consider the circuit below. When the switch is closed, voltmeter V_1 reads 4V, V_2 reads 1.6 V and voltmeter V_4 reads 1 V.

6.2

- 6.2.1 Calculate the effective resistance of the combination of the three resistors. (3)
- 6.2.2 Determine the voltmeter reading on V_3 when the switch is closed. (2)
- 6.2.3 If the current passing through the 8 Ω resistor is 0,2 A, what will the current (2) through 5 Ω resistor be? Explain.
- 6.3 A charge of 48 C flows through a circuit in 2 minutes. Calculate the current flowing through the circuit.

(3) **[18]**

(2)

(3)

TOTAL: 100

11

DATA FOR PHYSICAL SCIENCES GRADE 10 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 10 VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS / TABEL 1: FISIESE KONSTANTES

NAME / NAAM	SYMBOL / SIMBOOL	VALUE / WAARDE
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m⋅s ⁻¹
Plank's constant Plank se konstante	Н	6,63 x 10 ⁻³⁴ J⋅s
Charge on electron Lading op elektron	E	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ^{−31} kg

TABLE 2: FORMULAE / TABEL 2: FORMULES WAVES, SOUND AND LIGHT / GOLWE, KLANK EN LIG

$v = f \lambda$	$f = \frac{1}{T} \text{ or/of } T = \frac{1}{f}$
$E = hf = \frac{hc}{\lambda}$	

ELECTRIC CIRCUITS / ELEKTRIESE STROOMBANE

$V = \frac{W}{Q}$	$I = \frac{Q}{\Delta t}$
$R_{s} = R_{1} + R_{2} + \dots$	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

CLASS:

NAME:

PHYSICAL SCIENCES GRADE 10 PAPER 1