NATIONAL SENIOR CERTIFICATE

GRADE 10

NOVEMBER 2020

MATHEMATICS P2
 (EXEMPLAR)

MARKS: 100
TIME: 2 hours

This question paper consists of 10 pages and an answer book of 14 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 6 questions.
2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining the answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Number the answers correctly according to the numbering system used in this question paper.
9. Write neatly and legibly.

QUESTION 1

1.1 The following mathematics test marks were recorded for a Grade 10A class of 28 students.

MARKS	FREQUENCY	MIDPOINTS	MIDPOINT \times FREQUENCY
$0<x \leq 30$	2	15	30
$30<x \leq 40$	3	35	105
$40<x \leq 50$	11	45	495
$50<x \leq 60$	7	55	
$60<x \leq 70$	3		195
$70<x \leq 80$	2	75	150
$80<x \leq 100$	0	90	0

1.1.1 Complete the table above by filling in the two missing numbers.
1.1.2 Calculate an estimate of the mean mark.
1.1.3 Represent the data on a frequency polygon.
1.1.4 In which interval does the
(a) median lie?
(b) $80^{\text {th }}$ percentile lie?
1.2 The following Mathematics test marks of a Grade 10B class are recorded below:

45	49	50	51	51	53	54	57	57	59	60	64
65	66	70	71	73	74	75	76	83	89	89	

1.2.1 Write down the median mark for this class.
1.2.2 Calculate the interquartile range mark for this class.
1.2.3 Represent the data on a box and whisker diagram.
1.2.4 Comment on the distribution of the data with reference to the box and whisker diagram.

QUESTION 2

In the diagram below, the coordinates of $\triangle \mathrm{ABC}$ are given as $\mathrm{A}(-2 ; 4), \mathrm{B}(-6 ;-2)$ and $\mathrm{C}(8 ; 2)$. P and Q are the midpoints of AB and BC respectively.

2.1 Calculate the coordinates of P and Q .
2.2 Show that:
2.2.1 $\mathrm{PQ} / / \mathrm{AC}$
2.2.2 $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
2.3 Calculate, to two decimal places, the perimeter of $\Delta \mathrm{ABC}$.

QUESTION 3

3.1 If $x=229,5^{\circ}$ and $y=117,6^{\circ}$, determine to two decimal places the values of:
3.1.1 $\sin (x+y)$
3.1.2 $\cos 2 y$
3.1.3 $\operatorname{cosec} x$
3.2 Determine the value of x to one decimal place:
3.2.1 $\cos 2 x=0,50$
3.2.2 $7 \sec x-11=0$
3.3 If $\cos x=\frac{3}{4}$ and $0^{\circ}<x<90^{\circ}$, determine the value of $\tan x$.
3.4 If $\tan \theta=\frac{6}{8}$ and $\sin \theta<0$, determine the value of $\sec \theta-\operatorname{cosec} \theta$
3.5 Without using a calculator, determine the value of x in the diagram below.

QUESTION 4

In the diagram below, the graph of $f(x)=\tan x$ is drawn for $x \in\left[0^{\circ} ; 360^{\circ}\right]$.

4.1 Sketch on the same axis the graph of $g(x)=\sin 2 x$ for $x \in\left[0^{\circ} ; 360^{\circ}\right]$.
4.2 What is the amplitude of f ?
4.3 Write down the period of g.
4.4 For which value(s) of x is:
4.4.1 $f(x)<0$
(2)
4.4.2 $f(x) . g(x)<0$
4.5 Write down the range of $k(x)$ if $k(x)=g(x)-1$.

QUESTION 5

5.1 Use the diagram below to prove that the opposite sides of a parallelogram are equal, i.e. $A B=C D$ and $A D=B C$.

Hint: Prove that $\Delta \mathrm{ABD} \equiv \Delta \mathrm{CDB}$

5.2 In the diagram below, KLMN is a parallelogram with $\widehat{\mathrm{N}}=7 x-30^{\circ}$ and $\widehat{\mathrm{L}}=5 x+18^{\circ}$.

5.2.1 Calculate the value of x.
5.2.2 If it is further given that $\mathrm{L} \widehat{\mathrm{K}} \mathrm{N}=4 y$, determine the value of y.
5.3 In the diagram below, ABCD is a parallelogram such that $\mathrm{AD}=\mathrm{BE}, \widehat{A}=124^{\circ}$, ED bisects $B \widehat{E F}$ and BEFD is a quadrilateral.

Calculate, with reasons, the values of x and y.

5.4 In the diagram below, $\mathrm{FT}=5 \mathrm{~cm}, \mathrm{ET}=7 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm}, \mathrm{CT}=10 \mathrm{~cm}, \mathrm{DT}=14 \mathrm{~cm}$ and $\mathrm{CD}=18 \mathrm{~cm}$.

5.4.1 Prove that $\Delta \mathrm{EFT}\|\| \Delta \mathrm{DCT}$.
5.4.2 If it is further given that $\mathrm{D} \widehat{\mathrm{F}} \mathrm{C}=\mathrm{T} \widehat{D} C$, prove that $\mathrm{F} \widehat{C} C=T \hat{F} C$.
5.5 5.5.1 Complete the following statement for $\triangle \mathrm{ABC}$:

If D is a point on AB and E is a point on AC such that $\mathrm{AD}=\mathrm{DB}$ and DE || BC , then ...
5.5.2 In $\Delta \mathrm{DEF}, \mathrm{DS}=\mathrm{SE}, \mathrm{EU}=\mathrm{UF}$ and $\mathrm{ST} \| \mathrm{EF}$.

Prove that SEUT is a parallelogram.

QUESTION 6

The cylinder in the diagram below has a diameter of $4 x$ units and a height of h meters. The cylinder is open at the top and the total surface area of the cylinder $=32 \pi$ meters.

Calculate the height of the cylinder in terms of x.

