

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2019

GRADE 10

MATHEMATICS

(PAPER 1)

TIME: 1 hour MARKS: 50

4 pages

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS (PAPER 1)

Time: 1 hour Marks: 50

INSTRUCTIONS AND INFORMATION:

- 1. This question paper consists of FOUR questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs etc. which were used in determining the answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless otherwise stated.
- 6. Where necessary, answers should be rounded off to TWO decimal places, unless otherwise stated.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number your answers according to the numbering system used in this question paper.
- 9. Write neatly and legibly.

QUESTION 1

- 1.1 Simplify the following:
 - $1.1.1 \quad (5x+1)(2x^2-3x-1) \tag{3}$

$$1.1.2 \quad \frac{9^{x+1}.5^{x+2}}{45^{x+1}} \tag{3}$$

1.2 Factorise fully:

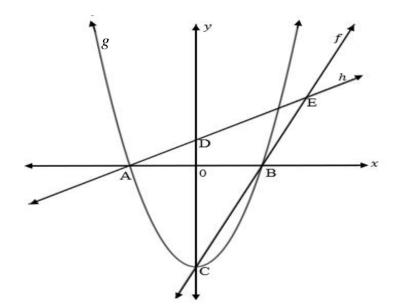
1.2.1	$2x^2 + 3x - 5$		(2)
-------	-----------------	--	-----

1.2.2
$$-3(-3x^4y)^2 - (-3x^2y^2)^3 + 12x^2 - 12y^4$$
 (6)
[14]

QUESTION 2

2.1	Solve for x :	
	2.1.1 $x(x-4) = 12$	(3)
	2.1.2 $\frac{x-3}{1-x^2} - \frac{2x+4}{x+1} = \frac{-2x}{x-1}$	(5)
	$2.1.3 2^x - 2^{x-1} = 4$	(3)
2.2	Given: $-2 \le -2x - 1 < 3$	
	2.2.1 Solve for x .	(3)
	2.2.2 Rewrite your answer using interval notation.	(1)
	2.2.3 Illustrate your answer on a number line for $x \in \Box$.	(1)
2.3	The sum of the squares of two consecutive natural numbers is 85. Determine the numbers.	
		[20]

QUESTION 3


Consider the general term $T_n = \frac{1}{3n+1}$.

3.1	Write down the first TWO terms of the sequence.	(2)
3.2	Determine which term in the sequence has a value of $\frac{1}{325}$.	(2)
		[4]

QUESTION 4

Sketched below are the graphs of f(x)=2x-4; $g(x)=ax^2-q$ and h(x)=mx+c.

A and B are the x-intercepts and C is the turning point of g. B is the x-intercept and C is the y-intercept of f, A is the x-intercept and D is the y-intercept of h.

4.5	For which value(s) of x is $f(x) \ge g(x)$?	(2) [12]
4.4	Write down the range of g .	(1)
4.3	Determine the coordinates of E, the point of intersection of f and h .	(3)
4.2	Show that the equation of <i>h</i> is $y = \frac{1}{2}x + 1$ if the length of CD = 5 units.	(3)
4.1	Determine the equation of g .	(3)