

NATIONAL SENIOR CERTIFICATE

GRADE 10

NOVEMBER 2019

AGRICULTURAL SCIENCES P2 MARKING GUIDELINE

MARKS: 150

This marking guideline consists 9 pages.

SECTION A					
QUESTION 1					
1.1	1.1.1	D $\sqrt{}$			
	1.1.2	$B \sqrt{}$			
	1.1.3	$D\sqrt{1}$			
	1.1.4	$B \sqrt{}$			
	1.1.5	C VV			
	1.1.6	$B \sqrt{}$			
	1.1.7	A $\sqrt{}$			
	1.1.8	A $\sqrt{}$			
	1.1.9	A $\sqrt{}$			
	1.1.10	$B \sqrt{}$	(10 x 2)	(20)	
1.2	1.2.1 1.2.2	E $\sqrt{}$ F $\sqrt{}$			
	1.2.2 1.2.3 1.2.4	$D \sqrt[]{}$ $H \sqrt[]{}$			
	1.2.4	n vv A √√	(5 x 2)	(10)	
1.3	1.3.1 1.3.2	Humification $\sqrt{}$			
	1.3.2 1.3.3 1.3.4	Pollution $\sqrt{}$ Metaphase $\sqrt{}$			
	1.3.4	Multicellular $\sqrt{}$	(5 x 2)	(10)	
1.4	1.4.1 1.4.2	Lithosphere $$ Deciduous $$			
	1.4.3 1.4.4	Soil crusting $$ Choloroplast $$			
	1.4.5	Mitosis √	(5 x 1)	(5)	
			TOTAL SECTION A:	45	

SECTION B

QUESTION 2: SOIL SCIENCES

2.1 **Description of soil components**

2.1.1	(a)	5% √	(1)

(b)
$$45\%\sqrt{}$$
 (1)

2.1.2 **Functions of oxygen in the soil for plant growth**

- Respiration of plant roots $\sqrt{}$
- Germination of plant seeds $\sqrt{}$ (2)

2.1.3 Calculation of the mineral component in a 1 kg soil sample

$\frac{45 \text{ X } 1 \text{ kg}}{100} $	= 0,45 kg \checkmark	OR	$\frac{45 \text{X} 1 000 \text{g}}{100} \sqrt{\sqrt{3}}$	= 450 g	
0,45 x 1 000	= 450 g √	v			(3)

2.1.4 Difference between gravitational water and hygroscopic water

- Gravitational water is excess water that drains through the soil under the influence of gravity. \checkmark
- **Hygroscopic water** is tightly bound to the soil particles. $\sqrt{}$ (2)

2.1.5 Human activities that reduce soil organism population

- Excess fertilisation $\sqrt{}$
- Pesticides application $\sqrt{}$
- Poor waste management $\sqrt{}$
- Over-cultivation

2.2 2.2.1 Characteristics of minerals

- (a) Cleavage $\sqrt{}$ (1)(b) Hardness $\sqrt{}$ (1)(c) Specific gravity $\sqrt{}$ (1)(d) Transparency $\sqrt{}$ (1)
- (e) Tenacity √ (1)

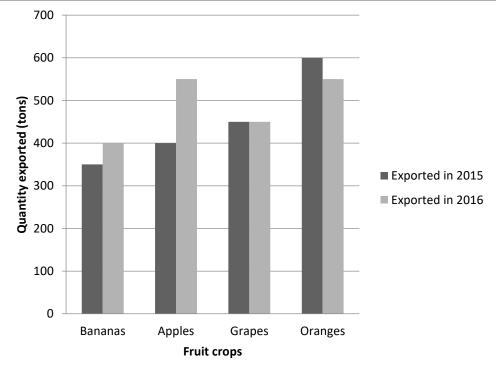
2.2.2 Formation of secondary minerals and primary minerals

- Primary minerals are minerals formed during the original solidification of the rock under high temperature and pressure $\sqrt{}$
- Secondary minerals are formed when primary minerals undergo chemical change $\sqrt{}$ (2)

(Any 2 x 1)

(2)

	2.2.3	Examples of secondary minerals• Kaolinite $$ • Vermiculite $$ • Illite $$ • Haematite $$ • Goethite $$	(2)
2.3	2.3.1	Types of rocks A – Sedimentary rock $$ B – Igneous rock $$ C – Metamorphic rock $$	(3)
	2.3.2	 Formation of Rock A and B A – Sedimentary rocks are formed when sediment is deposited by wind, water and organisms resulting in them piling up over thousands of years √ B – Igneous rocks are formed when volcanoes erupts and magma comes out and solidifies on the Earth surface √ 	(2)
	2.3.3	Suitability of rock C for cultivation of deep-rooted crops • Metamorphic rock soils are not suitable for deep rooted crops $$	(1)
	2.3.4	 Motivation The soil formed is not deep √ The soil is easily compacted √ The soil is poorly drained √ which is not good for deep rooted crops (Any 2 x 1) 	(2)
2.4	2.4.1	 Type of weathering Biological √ 	(1)
	2.4.2	Motivation • Plant roots penetrate cracks in the rocks causing them to widen $$	(1)
	2.4.3	Other types of weathering• Chemical $$ • Physical $$ (Any 1 x 1)	(1)
	2.4.4	 Role of oxygen in chemical weathering Oxygen speeds up the chemical reaction process on rocks which is called oxidation √ Where oxygen combines with compound elements in rocks to form oxides or rust √ that weakens the rock structure 	(2)
2.5	A – Clir	rming factors mate $$ pography $$	(1) (1) [35]


3.1	3.1.1	 Importance of growing maize and wheat in South Africa For making sugars, alcoholic drinks, sugar and syrups √ Corn oil from maize seeds is used for making margarine and salad oil √ 			
		 Source of food for the people and livestock √ Wheat is used to make flour for bread √ Used as bio-fuel √ 	(Any 2 x 1)	(2)	
	3.1.2	 Climatic conditions suitable for winter wheat Needs cool environments with optimum temperatur 20 °C–25 °C (degrees Celsius) √ Average rainfall of 600–850 mm in the winter sease 		(2)	
	3.1.3	 Discuss why deep, well-drained soil is good for ma Deep soils encourage root development of maize c Well drained soil is good for aeration √ Hard layers or compacted soils do not promote roo development √ 	rop √	(2)	
	3.1.4	Class of field crops (a) Industrial crops $$ (b) Grain crops $$		(1) (1)	
	3.1.5	 Function of fibre To make paper √ Insulation √ Timber frames √ 	(Any 1 x 1)	(1)	
3.2	3.2.1	+ Orticulture - This is the science and art of growing fruit, vegetable flowers $$	les and	(1)	
	3.2.2	Advantages of genetic engineering in horticulture • Develop disease resistant cultivars $$ • Increase nutritional content $$		(2)	
	3.2.3	 Factors to consider when choosing vegetable cult Adaptation to the environmental conditions/climate Pest and disease resistant √ Days it takes to mature √ Yield potential √ Market demand √ 		(3)	
	3.2.4	 Economic and environmental benefits of using dis resistant crops The farmer will save money by reducing pesticides Reduction of pesticide application reduces pollution environment √ 	applied $$	(2)	

3.2.5 Classification of vegetable crops

- Root √
- Stem √
- Leaves√
- Fruits √
- Flowers √

(Any 2 x 1) (2)

3.3 3.3.1 Bar graph showing quantities of fruit crops exported by a group of farmers in 2015 and 2016

Marking guideline for the bar graph

- Correct caption $\sqrt{}$
- Variable on y-axis correctly labelled and calibrated (Quantity exported) \checkmark
- Variable on x-axis correctly labelled and calibrated (Fruit crops) $\sqrt{}$
- Units indicated on y-axis (tons) $\sqrt{}$
- Bar graph $\sqrt{}$

3.3.2 Fruit crop with highest increase in export Apples $\sqrt{\sqrt{}}$

3.3.3 Challenges in exporting bananas

- Bananas are perishable / quickly rot $\sqrt{}$
- Bananas are bulk $\sqrt{}$
- Costly/expensive to transport $\sqrt{}$

3.3.4 Importance of exporting fruit crops to the economy of South Africa

- Exporting brings in foreign currency to the country which boosts the economy \surd

(Any 2 x 1)

(5)

(2)

(2)

(1)

3.4

3.3.5 **Percentage increase of oranges produced**

920 t – 700 t = 220 t $$	
$\frac{220 \text{ t} \times 100}{700 \text{ t}} $	
= 31,4% √	(3)
 Reasons why Lantana camara was declared an invader It causes drastic loss of indigenous plants √ It causes depletion of underground water √ (Any 1 z) 	x 1) (1)
Exotic/Alien $$	(1)
 Reason why Lantana camara's population increases more than indigenous plants Lantana camara has fewer natural pests and diseases that caffect its growth than indigenous plants 	an (1) [35]
	$\frac{220 \text{ t x 100}}{700 \text{ t}} $ $= 31,4\% $ Reasons why Lantana camara was declared an invader • It causes drastic loss of indigenous plants $$ • It causes depletion of underground water $$ (Any 1) Exotic/Alien $$ Reason why Lantana camara's population increases more than indigenous plants • Lantana camara has fewer natural pests and diseases that c

8

QUE	3110N 2	BIOLOGICAL CONCEPTS	JN AND	
4.1	4.1.1	 Tillage system Famer A/Zero tillage √ 		(1)
	4.1.2	 Motivation Zero tillage does not use expensive machines √ It is sustainable because it reduces rate of soil eros It promotes organic residue accumulation √ No soil tillage/cultivation √ 	ion √ (Any 2 x 1)	(2)
	4.1.3	 Adverse effects of maximum tillage Cause air pollution √ Cause compaction on the soil √ Disturb activities of micro and macro-organisms √ 	(Any 2 x 1)	(2)
	4.1.4	 Ways to reduce water loss Mulching √ Plant cover crops √ Removal of weeds √ 	(Any 1 x 1)	(1)
	4.1.5	 Ways to reduce soil erosion in the fields Allow vegetation in grazing fields to recover √ Sow cover crops √ Practise zero cultivation/no tilling √ Contour plough across slopes √ Reduce ploughing before rain falls √ 	(Any 1 x 1)	(1)
	4.1.6	 Consequences of soil degradation to consumers Food shortages because of decrease in production √ Higher food prices due to shortages √ Soil pollution threatens food safety √ 	√ (Any 2 x 1)	(2)
4.2	4.2.1	 Important aspects of soil living organisms Micro-organisms like fungi and bacteria break down/organic matter into soil nutrients √ / It recycles soil network organisms mix and aerate the soil by burrowing turning over the soil √ Living soil organisms improve soil structure √ 	utrients $$	(2)
	4.2.2	 Assessment of the statement The statement is not true √ Supporting reasons Farming reduces biodiversity and population of soil of Use of fertiliser, pesticides and fumigation reduces s 	organisms √	(1)
		 organisms √ Farming exhaust soil organic matter resulting in decionation organisms √ 	rease of soil (Any 2 x 1)	(2)

QUESTION 4: SUSTAINABLE NATURAL RESOURCE UTILISATION AND

		TOTAL SECTION B:	105
	4.4.4	Phases of mitosis A – Anaphase $$ B – Telophase $$	(2) [35]
	4.4.3	 Important aspects of mitosis Facilitates growth √ Replaces worn out cells or tissues √ Forms the basis of asexual reproduction in plants √ (Any 2 x 1) 	(2)
	4.4.2	 Justification Two daughter cells are produced $$ 	(1)
4.4	4.4.1	• Mitosis $$	(1)
		 function √ Examples – epidermal tissue/collenchyma tissue/vascular tissue √ Plant organs are a part of the body that perform a particular function √ Examples – root/stem/and leaves √ 	(4)
	4.3.5	 Plant tissues and plant organs Plant tissues are a group of similar cells that carry out the same 	
	4.3.4	 Functions of chloroplast Site of photosynthesis √ Contains chlorophyll which absorbs energy from sunlight √ That will be used to turn carbon dioxide and water to form glucose and oxygen √ (Any 2 x 1) 	(2)
	4.3.3	Labelling A – Nucleus $$ B – Chloroplast $$ C – Vacuole $$	(3)
	4.3.2	 Justification The cell has a cell wall √ Large vacuole √ (Any 1 x 1) 	(1)
4.3	4.3.1	 Plant cell Plant cell √ 	(1)
	4.2.4	National Water Act• Efficiency – Farmers should use water without wasting it \sqrt • Equity – Farmers should fairly share water resource $$	(2)
	4.2.3	 Waste management techniques Making compost with plant residues √ Use of biogas digesters √ Make use of some crop waste to make biofuel and alcoholic drinks √ (Any 2 x 1) 	(2)

GRAND TOTAL: 150